

AIUB DSpace Publication Details

Title	Envelope solitons in three-component degenerate relativistic quantum plasmas.
Author(s) Name	S. Islam, S. Sultana, A. A. Mamun
Contact Email(s)	sislam@aiub.edu, ssultana@juniv.edu, mamun_phy@juniv.edu
Published Journal Name	Physics of Plasmas
Type of Publication	Journal Article
Volume	25 Issue 1
Publisher	American Institute of Physics (AIP)
Publication Date	12 September, 2017
ISSN	1070-664X (print), 1089-7674 (online)
DOI	10.1063/1.5001834
URL	https://aip.scitation.org/php/info/focus
Other Related Info.	

Abstract

The criteria for the formation of envelope solitons and their basic features in a three-component degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate elec trons, non-degenerate inertial light nuclei, and stationary heavy nuclei) are theoretically investigated. The nonlinear Schrödinger equation is derived by employing the multi-scale perturbation

Page **1** of **2**

technique. The envelope solitons are found to be associated with the modified ion-acoustic waves in which the inertia (restoring force) is provided by the mass density of light nuclei (degenerate pressure of cold electrons). The basic features of these envelope solitons, which are found to formed in such a DRQP system, and their modulational instability criteria (on the basis of the plasma parameters associated with the degenerate pressure of electrons, number densities of degenerate electrons, inertial light nuclei, and stationary heavy nuclei) are identified. The numerical simulations are also performed to confirm the stability of the envelope solitons predicted here by analytical analysis. Published by AIP Publishing.

