

AIUB DSpace Publication Details

Title	Preparation of Activated Carbon/TiO ₂ Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight
Author(s) Name	Bappy Mondol, Anupam Sarker, A. M. Shareque, Shaikat Chandra Dey, Mohammad Tariqul Islam, Ajoy Kumar Das, Sayed Md. Shamsuddin, Md. Ashraful Islam Molla and Mithun Sarker
Contact Email(s)	tariquldu@aiub.edu, corresponding: mithun@du.ac.bd
Published Journal Name	Photochem
Type of Publication	Journal
Volume	1
Publisher	MDPI
Publication Date	May, 2021
ISSN	2673-7256
DOI	https://doi.org/10.3390/photochem1010006
URL	https://www.mdpi.com/2673-7256/1/1/6
Other Related Info.	Page 54 - 66

AIUB DSpace Publication Details

Abstract

Activated carbon/titanium dioxide (AC/TiO₂) nanohybrids were synthesized by a hydrothermal technique using various weight percent of commercial AC and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). The synthesized nanohybrids were applied to photodegradation of Reactive Red-35 (RR-35) dye in aqueous solution using sunlight. Due to the synergistic effect of adsorption and photodegradation AC/TiO₂ nanohybrids were more efficient in treating the aqueous dye solution than that of AC and TiO₂. The maximum (95%) RR-35 dye removal from the water was obtained with 20 wt% AC/TiO₂ within 30 min at natural pH of 5.6. The possible photodegradation mechanism of RR-35 dye with AC/TiO₂ was discussed from the scavenger test. Moreover, AC/TiO₂ was found to be suitable for long-term repeated applications through recyclability experiments. Therefore, AC/TiO₂ nanohybrid is a promising photocatalyst for treating azo dyes especially RR-35 from water.