

AIUB DSpace Publication Details

Modeling and performa	nce analysis of a transparen	t multilayer
-----------------------	------------------------------	--------------

solar cell

Author(s) Maria Sultana Rupa, M Tanseer Ali, Mohammad Abdul

Name: Mannan, Mehedi Hasan

Contact

Email(s): tanseer@aiub.edu

Published Journal

Name: AIUB Journal of Science and Engineering (AJSE)

Type of

Publication: Journal

Volume: 22 Issue 3

Publisher: American International University-Bangladesh (AIUB)

Publication

Date: December 20, 2023

ISSN: 2520 – 4890

DOI: https://doi.org/10.53799/ajse.v22i3.580

URL: https://ajse.aiub.edu/index.php/ajse/article/view/580

Other

Related Info.: Page 231 - 239

AIUB DSpace Publication Details

Abstract:

Transparent solar cells have emerged as a promising frontier in renewable energy research, offering the dual functionality of generating electricity while maintaining transparency. Five layers of InAs/InSb/AlGaAs/GaN/Si are incorporated into the proposed model structure which takes the properties of the source materials into consideration. Simulations of electromagnetic waves are used to evaluate optical and electrical properties. The cell is assumed to function at room temperature in the simulated settings. The I-V curve's fill factor (F.F.) of 0.6531 corresponds to a maximum conversion efficiency of 15.2655%, according to the data. Furthermore, at 530 nm, this combination and device configuration show a very good transparency of up to 60%.