

Contents lists available at ScienceDirect

Physica B

Transport-entropy correlations in La_{0.7}Ca_{0.3}MnO₃ manganite

J.C. Debnath*, A.M. Strydom

Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa

Article history:
Received 20 August 2013
Received in revised form
19 September 2013
Accepted 21 September 2013
Available online 27 September 2013

Keywords: Perovskite Magnetocaloric effect Resistivity Magnetic polaron

ABSTRACT

An investigation of the magnetic entropy change $\Delta S_{\rm M}$ and resistivity ρ , and the relation between them, for ${\rm La}_{0.7}{\rm Ca}_{0.3}{\rm Mn}{\rm O}_3$ (LCMO) material has been presented. By using an equation of the form $\Delta S_{\rm M} = -\alpha J_0^{\rm H} \left[\frac{\delta \ln \rho_0}{\delta I}\right]_H dH$ (α =9.98 emu/g), which relates magnetic order to transport behavior of the compounds, we measure the magnetic entropy change $\Delta S_{\rm M}$ from the resistivity measurement, where the resistivity results agree quite well with the fitting parameter α =9.98 emu/g in the intermediate temperature range. This result reveals the predominant role of magnetic polarons on the magnetoresistive property of manganites. It is obvious that magnetic disorder, characterized by $\Delta S_{\rm M}$, affects the magnetic polarons, while the magnetic polarons influence the electronic transport properties, which may be the underlying reason for a salient $\Delta S_{\rm M}-\rho$ relation. It also provides an alternative method to determine magnetic entropy change on the basis of resistive measurements.