

On the crystal structure and magnetic properties of the Mn_{0.94}Ti_{0.06}CoGe alloy

P. Shamba, ^{1,a)} J. L. Wang, ^{1,2} J. C. Debnath, ¹ R. Zeng, ^{1,3} F. Hong, ¹ Z. X. Cheng, ¹ A. J. Studer, ² S. J. Kennedy, ² and S. X. Dou ¹

¹Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

(Presented 15 January 2013; received 4 November 2012; accepted 21 February 2013; published online 12 April 2013)

Structural and magnetic properties of $Mn_{0.94}Ti_{0.06}CoGe$ have been studied by a combination of bulk magnetisation and neutron diffraction measurements over the temperature range of 5 K–350 K. The crystal structural transition occurs at T_{str} (~235 K) with a change in symmetry from the low temperature orthorhombic TiNiSi-type structure (space group Pnma) to the high temperature hexagonal Ni₂In-type structure (space group P63/mmc) and the magnetic phase transition takes place around T_{c} = 270 K. It is found that the structural transition around T_{str} is incomplete and there is a co-existence of the orthorhombic and hexagonal structures between T_{str} and T_{c} (~270 K). These results are discussed in connection with the magnetic and magnetocaloric behaviours in $Mn_{0.94}Ti_{0.06}CoGe$. © 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801523]

²Bragg Institute, ANSTO, Menai, NSW 2234, Australia

³Solar Energy Technologies, School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith South, Sydney, NSW 2751, Australia