

AIUB DSpace Publication Details

Title:	Synthesis of Bismuth Ferraites Nanoparticles by Modified Pechini Sol-Gel Method
Author(s) Name:	Md. Masud Parvez, Md. Ehasanul Haque, Munaly Akter and Humayra Ferdous
Contact Email(s):	ehasanul@aiub.edu
Published Journal Name:	International Journal of Science and Engineering Investigations
Type of Publication:	Journal
Volume:	<u>9</u> Issue <u>101</u>
Publisher:	
Publication Date:	June 2020
ISSN:	2251-8843
DOI:	
URL:	http://www.ijsei.com/papers/ijsei-910120-07.pdf
Other Related Info.:	Page 35-38

Abstract:

Different methods have been adopted for preparing BiFeO₃ nanopowder. Recently, wet chemical methods have received abundant attention. Among the wet chemical methods, the modified Pechini sol-gel method is very cost effective, simple and suitable for synthesis of highly homogenous and very fine crystalline nanopowder. The process is based on the mixing of reactants that oxidize easily, such as metal nitrates, and an organic chelating agent that acts as reducing agent.

