Improved magneto-dielectric properties in Co substituted Cr ferrites for miniaturized antenna applications

Shohanur Rahman Sagor^a, M. A. Hossain^a, M. D. Hossain^{a,b,*}, Md. Sarowar Hossain^{c,*}, M. S. Sikder^d

^aDepartment of Physics, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh

^bDepartment of Computer Science and Engineering, Northern University of Business & Technology Khulna, Khulna-9100, Bangladesh

^cDepartment of Physics, American International University-Bangladesh, Dhaka-1229, Bangladesh

^dPhysics Discipline, Khulna University, Khulna-9208, Bangladesh

*Email: deloarku11@gmail.com, sakil_phy@aiub.edu.

Abstract

The composition $Cr(Fe_{1-x}Co_x)_2O_4$ with x = 0.0, 0.1, 0.5, and 0.9 has been synthesized using the solid-state reaction method followed by the double sintering technique of presintering at 800 °C and sintering at 1332°C. The structure and cationic distribution in the studied samples obtained by the Rietveld refinement of X-ray diffraction (XRD) patterns confirm a mixed spinel cubic structure of Fd3m space group, with a reduction in impurity phase (α - Fe_2O_3) as Co^{2+} substitution increases. In addition, the scanning electron microscopy (SEM) of these samples indicates a decrease in grain size and porosities with higher Co content. The magnetic hysteresis measurement by a vibrating sample magnetometer (VSM) reveals that Co²⁺ substitution at Fe³⁺ enhances the magnetic properties, with maximum saturation magnetization (M_s) of ~4.03 × 10⁻² μ_B/F . U and coercivity (H_c) of ~102.1 Oe observed for x = 0.5. In addition, the frequency-dependent permeability (μ) improves with Co doping in Cr ferrite, and dielectric studies exhibit reduced loss tangent $(tan\delta)$ and enhanced dielectric quality factor (Q_{ε}) . Finally, the matching impedance becomes stable across a broad frequency range (3 kHz to 7 MHz) with $Z/\eta_0 \approx 0.75$, resulting in the Co-substituted Cr ferrites as promising materials for miniaturized antenna applications including superior magnetodielectric performance and eco-friendly composition.

Keywords: Cr ferrite, Rietveld refinement, SEM, Hysteresis loop, Matching impedance