Development of a Simulated Blood-Like Solution for Medical experiments

Md. Sarowar Hossain^{1,2*}, Humayra Ferdous^{1,2*}, Ejaj Tarif³, Md Aminul Islam⁴, Shamvi Md Abdullah¹, Frank Heaven Mondol⁵

¹Department of Physics, Faculty of Science and Technology (FST), American International University-Bangladesh, Dhaka-1229, Bangladesh

²Center for Biomedical Research (CBR), Dr. Anwarul Abedin Institute of Innovation (DA2I2), American International University-Bangladesh, Dhaka-1229, Bangladesh

³Department of Chemistry, Institute of Applied Sciences & Humanities, GLA University, Mathura-281406, Uttar Pradesh, India

⁴Aerospace Medicine, Combined Military Hospital, Bangladesh Armed Forces, Jessore-5800, Bangladesh

⁵Department of Computer Science and Engineering, American International University-Bangladesh (AIUB), Dhaka-1229, Bangladesh

*Email: sakil phy@aiub.edu, hferdous@aiub.edu

Abstract

Real human blood presents several challenges that hinder long-term and large-scale studies, such as rapid degradation and clotting of real blood, which restricts its usability and necessitates frequent procurement of fresh supplies and complex storage solutions. This study develops a stable, long-lasting blood-mimicking fluid (BMF) to replicate human blood. This BMF has been synthesized from Agar-Agar (C₁₂H₁₈O₉), Iron(II) Tetraphenylporphyrin (C₄₄H₂₈ClFeN₄), Ringer's solution, and red food color (C₂₀H₆I₄Na₂O₅). The microstructure and size of the particles inside the BMF have been studied using a field effect scanning electron microscope (FESEM). Additionally, the dynamic light scattering (DLS) method has been employed to analyze the particle distribution in BMF at various solution concentrations. The other physical and chemical properties of the studied BMF, such as pH, density, viscosity, glucose level, particle size, and conductance were measured. The synthesized BMF shows a viscosity of 3.24 mPa·s, density of 1.013 g/cm³, and average particle size of ~1.4–2.0 μm, closely resembling real blood. Moreover, the BMF demonstrates the conductivity of 3.56 mS/cm and does not show phase separation, confirming its hydrophilic behavior. In addition, a 24-hour circulation test confirmed its stability, making it suitable for biomedical device testing, especially in diagnostics and hemodynamic studies.

Keywords: Ringer's solution, Microstructure, density, viscosity, Flow test.