

AIUB DSpace Publication Details

Title:	Speed Control and a Full-Order State Observer for Efficiency Optimized Induction Motor
Author(s) Name:	Mohammad Abdul Mannan, T. Murata, J. Tamura and T. Tsuchiya
Contact Email(s):	mdmannan@aiub.edu
Published Journal Name:	Electric Power Components and System
Type of Publication:	Journal
Volume:	Issue
Publisher:	Taylor and Francis
Publication Date:	Sept. 2005
ISSN:	1532-5008
DOI:	10.1080/15325000590921026
URL:	https://doi.org/10.1080/15325000590921026
Other Related Info.:	Page 999-1013

Citation: Mohammad Abdul Mannan, Toshiaki Murata, Junji Tamura & Takeshi Tsuchiya (2005) Speed Control and a Full-Order State Observer for Efficiency Optimized Induction Motor, Electric Power Components and Systems, 33:9, 999-1013, DOI: 10.1080/15325000590921026

Abstract:

To improve the efficiency of an induction motor (IM), an algorithm has been developed in terms of slip frequency. A discrete-time multi-input and multi-output (MIMO) optimal regulator is proposed to achieve the desired speed with efficiency optimization. Furthermore, a full-order observer is proposed to estimate rotor flux and magnetizing current because these states of IM are feedback to design the proposed controller. The performances of the efficiency optimized speed control and observer system have been verified by simulation. Regarding the simulation study, it can be stated that the proposed controller and observer system are suitable for the implementation of efficiency optimized speed control of IM.

Keywords: Core loss, Efficiency optimization, Full-order observer, Induction motor, Optimal regulator, Speed control

