AIUB DSpace Publication Details

Title:	Temperature and Current Density Analysis of Thermoelectric Generator for Regenerative Breaking of the Hybrid Electric Vehicle			
Author(s) Name:	Md. Zilan Uddin Saif, Farhan Tasnim, Md.Abu Hanif, Md. Rasel Ahmed, Kawshik Shikder, Chowdhury Akram Hossain			
Contact Email(s):	chowdhury.akram@aiub.edu			
Published Journal Name:	Proceedings of International Conferen Beyond 2021	nce on Fo	urth Industrial	Revolution and
Type of Publication:	f Conference			
Volume:	437 Issue		N/A	
Publisher:	Springer			
Publication Date:	04 October 2022			
ISSN:	978-981-19-2444-6			
DOI:	https://doi.org/10.1007/97			
URL:	https://link.springer.com/chapter/10.1007/978-981-19-2445-3_16			
Other Related Info.:	pp 243–254			

Faculty of Engineering American International University-Bangladesh

Page **1** of **2**

AIUB DSpace Publication Details

Abstract:

The advancement in the area of Hybrid Electric Vehicles (HEVs) is one of the most dynamic in the modern world with the concern of global warming issues. The incorporation of a Regenerative Braking System (RBS) into this technology is also a primary element in keeping this field up to date fiercely. It is shown in this article that the suggested Thermo-Electric Generator (TEG) model can be compared to other current RBS technologies using the comparative research method described above. Aside from that, a representation of the model is provided together with the results of the temperature and current density study performed using the TEG. The suggested design was simulated using the Ansys mechanical model and the Ansys 2021 Workbench software, which was used to generate a test simulation of the concept. This device captures the wasted heat of the vehicle energy from the brake pad of the wheels and turns it into useful electrical energy. In accordance with the principles of RBS, this design will be one of the most important sources of extending the driving range of HEVs while simultaneously reducing the net cost of recharging for the end-user.

Page **2** of **2**