Enhancement of microstructure-based magnetic, electronic, and lattice contribution in a CoNiAl ferromagnetic shape memory alloy

Md. Sarowar Hossain^{1, 2*}, B. Rajini Kanth³, P. K. Mukhopadhyay²

¹Department of Physics, Faculty of Science and Technology (FST), American International University-Bangladesh, Dhaka-1229, Bangladesh

²S. N. Bose National Centre for Basic Sciences, J D Block, Salt Lake, India-700106

³LSMS, TKR Centre for Research and Innovation, T. K. R. College of Engineering and Technology, Hyderabad, India- 500097

*Email: sakil_phy@yahoo.com, sakil_phy@aiub.edu

Abstract

In this study, a Co-Ni-Al system with nominal compositions Co₄₂Ni₃₁Al₂₇ and Co₄₁Ni₃₂Al₂₇ was synthesized. The structural and microstructure of these confirm the presence of a non-ferromagnetic face-centered cubic (γ) phase interspersed between the grains of a ferromagnetic body-centered cubic (β) phase. Notably, γ phase is increased by 1.5 times in the Co₄₁Ni₃₂Al₂₇ sample due to the 1% substitution of Co by Ni. The microstructural tuning induced a higher thermal hysteresis in the shape memory effect of Co₄₁Ni₃₂Al₂₇ with an increase in enthalpy during the phase transition (Austenitic ↔ Martensitic). In addition, the temperature-dependent resistivity, $\rho(T)$ was measured to study the electron-phonon and electron-magnon scattering around the phase transition of the studied samples. The dynamic elastic properties of the studied samples were tracked by the relative change in sound velocity $(\delta v/v)$ with temperature and elastic recovery was confirmed in both alloys across the 120 K to 300 K range. However, the Co₄₁Ni₃₂Al₂₇ exhibits a high amount of lattice contribution to the shape recovery compared to the Co₄₂Ni₃₁Al₂₇. Moreover, a larger variation in relative resistivity $(\Delta \rho / \rho)$ for Co₄₁Ni₃₂Al₂₇ compared to Co₄₂Ni₃₁Al₂₇ during the phase transition indicates a larger shape change due to decreased Co content. Furthermore, the Co₄₁Ni₃₂Al₂₇ sample shows higher temperatures of martensitic start ($T_{MS} \approx 260$ K) and Austenitic finish $(T_{Af} \approx 290 \text{K})$ along with high Curie temperature $(T_c = 330 \text{K})$. Consequently, the temperature-dependent susceptibility (χ') confirms the higher magnetoelastic recovery in the Co₄₁Ni₃₂Al₂₇ sample, indicating an enhancement of magnetic field-induced strain (MFIS). Stress-induced Q^{-1} is lower for Co₄₁Ni₃₂Al₂₇ (~2.9 × 10⁻³) compared to Co₄₂Ni₃₁Al₂₇ sample $(\sim 5.0 \times 10^{-3})$ signifying the enhanced mechanical strength.

Keywords: Co-Ni-Al FSMA, Microstructure, Phase fraction, Lattice contribution, Martensitic Transformation.