Dynamics of electron density, and dielectric properties of CoFe₂O₄ nanoparticles influenced by substitution of La³⁺ at Fe³⁺

Md. Abdul Malek Sabuj¹, Frank Heaven Mondol¹, Syed Sabit Hossain¹, Humayra Ferdous^{2,3} and Md. Sarowar Hossain^{2,3*}

¹Department of Computer Science and Engineering, American International University-Bangladesh, Dhaka-1229

²Department of Physics, Faculty of Science and Technology (FST), American International University-Bangladesh (AIUB), Dhaka-1229, Bangladesh

³Center for Biomedical Research (CBR), Dr. Anwarul Abedin Institute of Innovation (DA2I2), American International University-Bangladesh (AIUB), Dhaka-1229, Bangladesh

*Email: sakil_phy@aiub.edu

Cobalt ferrite (CoFe₂O₄) has been subjected to the existence or nonexistence of ferroelectric properties. The nominal composition of CoLa_xFe_{2-x}O₄ (where, x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) has been synthesized by the sol-gel method. The synthesized grain sizes varied from 60 nm to 80 nm. The electron density plots obtained using Rietveld refinement of the x-ray diffraction data showed the displacement of the Co and Fe ions which is highly influenced by the substitution of La³⁺ at Fe³⁺. It is also observed that the AC conductivity increases with the increase of La³⁺ amount in the parent sample (CoFe₂O₄) which is dominated by frequency. The contribution of grain and grain boundaries on dielectric relaxation has been investigated at room temperature (25°C). The electric permittivity (ε) is also enhanced due to substitution La³⁺ at Fe³⁺. Finally, the composition CoLa_{0.10}Fe_{1.9}O₄ sintered at 700°C shows the highest electric permittivity (ε ') with low dielectric loss (*tan* δ) and finds suitable application for the strain gauge, made by evaporating a small amount of metal onto the surface of a thin sheet of this material.

Fig. 1. Unit cell structure of CoLa_{0.10}Fe_{1.9}O₄ sample sintered at 700°C.

Keywords: Microstructure, Electron-density, Conductivity, Dielectric relaxation, Permittivity.

References:

Smita Chaturvedi, Priyank Shyam, Amey Apte, Jitender Kumar, Arpan Bhattacharyya, A.
M. Awasthi, and Sulabha Kulkarni, Phys. Rev. B 93, 174117 (2016)

[2] M. D. Hossain, A. T. M. K. Jamil, and Md. Sarowar Hossain, and S. J. Ahmed, and H. N. Das, and R. Rashid, and M. A. Hakim, and M. N. I. Khan, RSC Adv. **12(8)**, 4656-4671 (2022)