

Effects of Cr substitution on structural and magnetic properties in La_{0.7}Pr_{0.3}Fe_{11.4}Si_{1.6} compound

M. F. Md Din,^{1,2,a)} J. L. Wang,^{1,3} A. J. Studer,³ Q. F Gu,⁴ R. Zeng,¹ J. C Debnath,¹ P. Shamba,¹ S. J. Kennedy,³ and S. X. Dou¹

(Presented 7 November 2013; received 23 September 2013; accepted 19 December 2013; published online 3 April 2014)

In an effort to explore the effect of substitution Fe by Cr in NaZn₁₃-type La_{0.7}Pr_{0.3}Fe_{11.4-x}Cr_xSi_{1.6} (x = 0, 0.06, 0.12, 0.26, and 0.34) compounds, the structure and magnetic properties have been investigated by high intensity of x-ray and neutron diffraction, scanning electron microscopy, specific heat, and magnetization measurement. It has been found that a substitution of Cr for Fe in this compounds leads to decrease in the lattice parameter a at room temperature but variation on Curie temperature (T_C). While the first order nature of magnetic phase transition around T_C does not change with increasing Cr content up to x = 0.34. High intensity x-ray and neutron diffraction study at variable temperatures for highest Cr concentration x = 0.34 confirmed the presence of strong magneto-volume effect around T_C and indicated the direct evident of coexistence across magnetic transition as characteristic of first order nature. The values of $-\Delta S_M$ around T_C decrease from $17 \text{J kg}^{-1} \text{K}^{-1}$ for x = 0 to $12 \text{J kg}^{-1} \text{K}^{-1}$ for x = 0.06 and then increases with further increasing Cr content up to $17.5 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ for x = 0.34 under a change of 0–5 T magnetic field. Similar behavior on relative cooling power which is decrease from $390 \,\mathrm{Jkg}^{-1}$ for x = 0 to $365 \,\mathrm{Jkg}^{-1}$ for x = 0.06 at the beginning and then increases up to $400 \, \mathrm{J \, kg^{-1}}$ for x = 0.34. From the point of this view with the

Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522,

Australia
²Department of Electrical & Electronic Engineering, Faculty of Engineering, National Defence University

of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia ³Bragg Institute, ANSTO, Lucas Heights, NSW 2234, Australia

⁴Australian Synchrotron, 800 Blackburn Rd, Clayton 3168, Australia